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Abstract 

Atkinson, M.D. and J.-R. Sack, Generating binary trees at random, Information Processing Letters 41 (1992) 21-23. 

We give a new constructive proof of the Chung-Feller theorem. Our proof provides a new and simple linear-time algorithm 

for generating random binary trees on n nodes; the algorithm uses integers no larger than 212. 
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1. Introduction 

Methods for generating binary trees on n nodes 
have been considered by several authors (see [4,8] 
and [6] also for additional references). In most 
cases the focus has been on generating all binary 
trees in some order or on ranking and unranking 
them. The number of binary trees on n nodes is 
the Catalan number <‘,“)/(n + 1) which is expo- 
nential in n (= 4”) and so these computations 
cannot be carried out very easily unless II is 
small. Unranking algorithms allow binary trees to 
be generated uniformly at random and this is 
often more useful than being able to list all the 
possible trees. Unfortunately, numbers which are 
exponential in IZ enter these calculations and this 
makes them impracticable unless n is small. 

The problem of generating binary trees uni- 
formly at random without introducing exponen- 
tially large numbers was overcome by Arnold and 
Sleep [l] and Martin and Orr 161; they gave linear 
time algorithms which used integers of size O(n) 
for generating a random binary tree. We shall 
present a new and simpler solution having the 
same advantages. Our solution is based on a 
constructive version of the Chung-Feller theo- 

rem on coin-tossing, which has not previously 
been applied to this area. Our treatment also 
provides a new proof of the Chung-Feller theo- 
rem. 

The set of binary trees on n nodes is well 
known to be in one-to-one correspondence with 
many other sets of combinatorial objects includ- 
ing rooted (ordered) trees with n branches, trian- 
gulations of a convex (n + 2%gon, lattice paths 
from (0, 0) to (n, n) which do not cross the diago- 
nal, and well-formed bracket sequences with n 
pairs of brackets. The one-to-one correspon- 
dences are explicit and efficient to compute in 
linear time; thus a uniform random generator for 
binary trees gives rise to a uniform random gen- 
erator for all these other objects, and vice versa. 
We shall focus on generating well-formed se- 
quences of brackets. 

2. Terminology 

We begin with some terminology. It is conve- 
nient to denote the left and right bracket symbols 
by A and p respectively. Thus a bracket sequence 
(well formed or not> corresponds to a word over 
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Fig. 1. The zigzag diagram corresponding to the word 

APPhPhhhPP. 

the alphabet (A, p}. A word such as ApphphAApp 
may be pictured as a zigzag diagram drawn from 
some base line where each upward edge repre- 
sents A and each downward edge represents p 
(see Fig. 1). 

A word is said to be balanced if it contains 
equal numbers of A’s and p’s. Balanced words 
are precisely those whose diagram returns to the 
base line. A balanced word w is said to be re- 
ducible if it may be written w = w,wZ with w,, w2 
each balanced and nonempty, otherwise w is 
irreducible. 

A balanced word is defined to have defect i if 
its diagram has precisely 2i links below its base 
line. Defect 0 words are called well-formed and 
corresponds to well-nested bracket sequences. 
Observe that the defect of a word is easily found 
by a summation: we scan the word of length k 
from left to right regarding each A as + 1, each p 
as - 1, and computing the partial sums 0, 

sr,..., sk; the final sum is zero and the number of 
negative interim sums s, at odd indices j is the 
defect. We call this calculation partial summa- 

tion . 

For any word w let w* denote the result of 
replacing all occurrences of A by p and p by A. 
The following two results are immediate conse- 
quences of these definitions. 

Lemma 1. If a balanced word w is irreducible, then 
one of w and w * is well-formed; in fact, w = Aup 
where u is well-formed, or w = pu A where u * is 
well-formed. If a balanced word w is well-formed, 
then Awp is irreducible. 

Lemma 2. A balanced word w has a unique 

factorisation as w = w,wz . . . wk, where each wi is 
irreducible. If w is well-formed, so is each wi. 

3. The algorithm 

Let B, denote the set of (‘,:I) balanced words 
of length 2n, and let B,l, denote the subset of 
balanced words of defect i. Clearly B, is the 
disjoint union of B,,,, B,,,, . . , B,,,,. The Chung- 
Feller Theorem, see [2, Theorem 2Al and [3, 
p.941, states that these subsets all have the same 
size. The central idea of our algorithm is to use a 
new constructive proof of this theorem which 
depends on explicit l-l correspondences be- 
tween these sets. 

Our algorithm has the following form: 

Algorithm RANDOM BRACKET SEQUENCE 

Input: An integer n. 
Output: A well-formed word of length 2n over 

the alphabet (A, p). 

Generate a uniformly random combination L 
of n integers from (1, 2,. . ,2n} 
Define a random member x = (X,X, . . x2,,) 

of &,I by the rule X, = A if i EL, x, =p if 
i @ L. 

Return the well-formed member of B,,, to 
which x corresponds. 

Steps 1 and 2 of the algorithm are straightfor- 
ward. To generate a combination of n integers 
from (1, 2,..., 2n} uniformly at random, and 
hence a member of B,, we may use the technique 
described, for example, in 15, p.1371 (see also [7, 
pp. 189-1981 for more discussion on this topic). 
This technique takes only linear time and uses 
only integers less than 2n. 

To implement step 3 we need to define some 
suitable correspondences. We denote by 1 w 1 the 
length of w and by card(S) the cardinality of a set 
S. We now define a map @,, : B, -+ B,,. The defi- 
nition is inductive. For n = 0, we define @” in the 
only way possible : it maps the empty string to the 
empty string. For n > 0 and w E B, we begin by 
expressing w as w = UL’, where u is irreducible, 
1 UI = r > 0, 1 c I = s > 0; then we define @n by the 
rules 

@J w) = u@J c) if u is well-formed, 

@Jw) =AQS(n)pt* if u = pth is not well- 

formed. 
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Theorem 3. Qn is n + 1 to 1 onto B,,(, and is 

bijectice on each B,,,. 

Corollary 4. (Chung and Feller) card(B,,) = 

card( B,,,). 

Corollary 5. tf w is a random cariable distributed 

uniformly in B,, then Q,,(w) is distributed uni- 

formly in B,,,). 

Proof. It is sufficient to show that @,, is a bijec- 
tion B,, + B,, for each i. Suppose that w,,w* E 
B,, and that they have the same image under Qn. 
For k = 1,2 put wk = u~L:~, where uk irreducible, 
and let I uk I = rk, I l-k I = sk. There are four possi- 
bilities: 

(1) u,,u2 are each well-formed. Then 1~~ E B,,,;, 

1’2 E BSZ,O and u,QS{til) = Qn,(w,> = Qn,Cw,> = 
z+@~S,(L’~). By Lemma 2, u, = u2, QS,I(~‘r) = @JL’~) 
and so cl = zj2 by induction. 

(2) Neither of u, and z+ are well-formed, say 
ui = pt,h and u2 = pt,A. Then L’, E B,,,,_,,, cz E 

K2.i-rZ and hQT,,l(u,)ptT = h@,Jc2>pt$. The 
leading subwords AQS,l(v,)ptT and A@.JiS2)pt: 
are irreducible, therefore equal. Therefore, by 
induction, L’, = L’~ and t, = t,, so u, = u2. 

(3) u, is well-formed and u2 is not well- 

formed, say u2 =pt,A. Then L’, E B, ,,*, is2 E 

BSZ,i&rZ’ and u,@~{c,> = A@,Y.rZ(L’2)pt~. By Lemma 
2 agam, ui = AQS,Ju2)p and, taking lengths, r, = 
s2 + 2 and si = r2 L 2. But rz G i since c2 E BSz,iPr 
and i GS, since ~1, E B,,,, from which it follow: 
that i < s, < r2 - 2 < rz < i, a contradiction. 

(4) ui is not well-formed and u2 is well- 
formed. This case is impossible for the same 
reasons as case 3. 

This proves that @,, is one-to-one on B,,. To 
prove that it maps Bnj onto B,,) it is enough to 
show that these sets have the same size. But we 
have seen that card (Bni) G card(B,,,) for each i 
and if any of these inequalities were strict we 
would have the contradiction 

(‘n”) = card( B,,) = &card(&) 

<(n + l)card(B,,) = (“z). •I 

Lemma 6. If w E B,, SD,,(w) can be determined in 
O(n) time. 

Proof. We follow the inductive definition of 
QR,(w). Let T(n) be the total number of opera- 
tions required. The decomposition w = UL’, where 
u is irreducible, can be found in O(r) steps, 
where r = 1 u I by partial summation; the first par- 
tial sum equal to zero defines u. Then @,, _,(I’) 
must be calculated and so we obtain the recur- 
rence T(n) = O(r) + T(n - r) = O(n). 0 

Note that the computation of Qn,(w> requires 
no integers larger than 2n. Thus step 3 of our 
algorithm can be implemented in linear time, 
with integers of size O(n), by applying the func- 
tion Qn. 

The above discussion provides the proof of the 
following theorem: 

Theorem 7. Algorithm RANDOM BRACKET SE- 
QUENCE is an unbiased random binary tree gen- 
erator. It is executes in linear time and uses integers 
of size O(n). 
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